
Active Caching of On-Line-Analytical-Processing Queries
in WWW Proxies

Thanasis Loukopoulos, Panos Kalnis, Ishfaq Ahmad and Dimitris Papadias

Department of Computer Science
The Hong Kong University of Science and Technology, Hong Kong

e-mail: { luke, kalnis, iahmad, dimitris) @cs.ust.hk

Abstract
The Internet is offering more than just regular Web pages

to the users. Decision makers can now issue analytical, as
opposed to transactional, queries that involve massive data
(such as, aggregations of millions of rows in a relational
database) in order to identify useful trends and patterns.
Such queries are referred to as On-Line-Analytical-
Processing (OLAP) queries. Typically, pages carrying query
results do not exhibit temporal locality and, therefore, are
not considered for caching at WWW proxies. In OLAP
processing, this becomes a major hurdle as the cost of such
queries is much higher than traditional transactional
queries. This paper proposes a systematic technique to
reduce the response time for OLAP queries originating from
geographically distributed private LANs and issued through
the Web towards the central data warehouse (OW) of an
enterprise. An active caching scheme is proposed that
enables the LAN proxies to cache some parts of the data,
together with the semantics of the DW in order to process
queries and construct the resulting pages. OLAP queries
arriving at the proxy are either satisfied locally or from the
DU! depending on the relative access costs. We formulate a
cost model for characterizing the latencies of these queries,
taking into consideration normal Web access as well as
analytical processing. We propose a cache admittance and
replacement algorithm that outperforms a widely accepted
caching algorithm.

1 Introduction
Caching has emerged as a primary technique for coping

with high latency experienced by end-users in the WWW.
There are four major locations where caching is performed:
a) proxy at the front-end of a server farm [5]; b) network
cache at the end-points of the backbone network [lo]; c)
LAN proxy [l]; d) browser. Although caching at these
locations has been shown to significantly reduce the Web
traffic [2], dynamically generated pages are not cacheable.
Dynamic pages typically consist of a static part and a
dynamic part (for example, query results from a database
with a Web server linked to it).

On the other hand, the need for decision support systems
has become of paramount importance in today’s business,
leading many enterprises to build decision support
databases called data warehouses (DWs) [I I]. Decision
makers issue analytical (as opposed to transactional)
queries that typically involve aggregations of millions of
rows in order to identify interesting trends. Such queries are
often referred to as OLAP (On-Line-Analytical-
Processing). Users perceive the data of the DW as cells in a
multidimensional data cube [121. Fetching from the DW’s
sources the parts of the cube needed by queries and
performing aggregations over them is an extremely time
consuming task. A common technique to accelerate such
queries is to precalculate and store some results. Such
stored fragments are essentially parts of views in relational
database terms; we will refer to their storage as

materialization/caching of OLAP views. Most of the past
work on view selection for materialization is limited to the
central server.

The Web provides to geographically distributed clients,
an easy method to access a central DW. An example is that
of non-professional international investors who trade stocks
in stock markets around the world. Since their queries are
usually ad-hoc and driven by previous results (roll-up, drill-
down), it is not possible for the data owner to provide a set
of predefined query templates. Potential applications are not
limited to the financial sector. Meteorological and
environmental databases or other scientific information
sources also have similar requirements. The problem was
presented in [I41 where the authors proposed a dedicated
infrastructure of DBMSs that acts as a proxy server for
OLAP data.

In this paper we deal with the problem of caching OLAP
queries posed by ad-hoc, geographically spanned users,
through their web browsers. Unlike the previous approach,
however, we employ the existing proxy infrastructure and
propose a method of caching both Web pages and OLAP
query results in common proxy servers. Web pages carrying
OLAP query results, hence abbreviated as WOQPs (Web
OLAP query pages), are essentially dynamic pages, and are
normally marked as uncacheable. This is not because their
content changes frequently but due to the ad-hoc nature of
OLAP queries (as it is unlikely that exactly the same query
may be issued in the near future). Therefore, unless the
caching entity is enhanced with query processing
capabilities it is impossible to use a cached WOQP in order
to answer future queries. inquiring a subset of the cached
results. We propose an active caching framework that
enables the proxies to answer queries using the views
cached locally and construct the WOQPs needed to present
the results in the users’ browsers. For tackling cache
replacement issues we develop an analytical cost model and
propose strategies that are experimentally proven to lead to
high quality solutions. Although active caching has been
employed before in answering transactional queries [191, to
the best of our knowledge this is the first time that OLAP
data are considered. The special case of OLAP involves
unique challenges (for instance the results may vary in size
by many orders of magnitude) and provides new
opportunities for optimization (e.g., the interdependencies
of the views in a lattice).

The caching entities are assumed to be world spanned
departmental LAN proxies of the company. This
assumption is made for the purpose of illustration since a
significant portion of the Web traffic in such environments
is expected to be directed towards the central DW. Our work
is applicable to the other caching points of the network,
provided that significant amount of traffic towards the DW
passes through them. The motivating principle is that
caching/replication under restricted environments 11 83, [21 J
can considerably decrease the response time perceived by
end-users.

The rest of the paper is organized as follows. Section 2

0190-3918/01$10.00 0 2001 IEEE
419

w r y
window

420

+ +

Level 3

Level 2

Level 1

Level 0

30

a) Query costs associated with each node b) Costs for computing views associated with each edge

Figure 3: Lattice and expanded lattice diagrams for cp, c, b dimensions with
associated query and view computing costs.

DW always keeps the topmost view materialized, in order to
be able to handle all OLAP queries [15]. We follow the
same policy in the central DW but not in the proxies, since
the size of the topmost view may be prohibitively large.

A well studied problem in the database community is
the view selection under storage and update constraints (see
Section 6), which can be defined as: given the query
frequencies and the view sizes, select the set of views to
materialize so as to minimize the total query cost under
storage capacity constraints and with respect to an update
window. The problem is solved with static centralized
solutions that are inefficient in the Web environment. Our
approach is fundamentally different since we consider a
distributed environment where OLAP views are cached
together with normal Web pages.
3 System Model

We consider an environment consisting of an enterprise
with a central DW located at its headquarters and multiple
regional departments having their own LANs. Each LAN is
assumed to be connected to the Internet through a proxy
server. Clients from the regional departments access the
Web site of the company and issue OLAP queries as well as
other Web traffic. The Web server of the company forwards
the queries to the DW, fetches the results, creates the
relevant WOQP and sends it back. In general, a WOQP has
a static part possibly consisting of many files (e.g., HTML
document, gif images), and a dynamic part consisting of the
query results. Throughout the paper we treat the static files
as one composite object and assume that all WOQPs have
the same static part. This is done without loss of generality,
since extending the framework to account for different
static parts is straightforward.

3.1 Limitations of Existing Caching Schemes
A brute force approach for caching WOQPs at a client

proxy is to treat them as static HTML documents, and give
them an appropriate TTL (time-to-live) value. The main
drawback of this strategy is that the proxy will be able to
satisfy a query only if it had been submitted in the past in its
exact form. For instance, a user request for the projection at
each year of the volume of products sold between 1996-
1998 will not be answered, even though the proxy might
have cached a WOQP referring to the volumes sold between
1995-1998. Treating WOQPs as normal Web pages will
also affect the overall system performance when it comes to
cache replacement decisions. The majority of replacement
algorithms proposed in the literature [6], [I31 assume that
only network latency determines cache miss cost. This is
not sufficient in our environment, since the processing time

for answering an OLAP query at the server-side is another
significant factor. Thus, there is a need for a new cache
replacement policy that takes into account both delays.

3.2 The Proposed Caching Policy
Our aim is to allow WOQP construction at the proxy

using locally cached views. Active caching [7] was
proposed in order to allow front-end network proxies to
dynamically generate pages. A cache applet is kept together
with the static part of the page and in the presence of a
request the applet fetches the dynamic data from the
original site and combines them with the cached static part
to create the HTML document. The main benefit of this
approach is that Web page construction is done close to the
client and network latencies are avoided. We implement a
similar scheme as follows:

The first time an OLAP query arrives at the central site,
it triggers a number of different files to be sent to the client
proxy:

A cache applet;

The WOQP answering the query;
The static part of the WOQP;

The view lattice diagram together with the associated
query costs (Figure 3(a)) and a flag indicating whether
the view is materialized at the server or not;
The id of the view used by the server to answer the
query.

The proxy forwards the WOQP to the end-user without
caching it and caches the applet, the lattice diagram and the
static part of the WOQP. Afterwards, it runs the cache applet
which is responsible to decide whether to fetch the
answering view from the server or not. Subsequent queries
are intercepted and the cache applet is invoked to handle
them. The applet checks whether the currently cached views
can answer the query at a cost lower than sending the request
to the server and selects the minimum cost cached view to do
so. Then, it combines the query results with the static part of
the WOQP to create the answering page. In case the views
currently cached in the proxy can not answer the query, or
answering the query from the proxy is more costly than
doing so from the server, the request is forwarded to the Web
server. The Web server responds with the WOQP carrying
the results, together with the id of the view used to satisfy the
query. The WOQP is forwarded to the client without being
cached and subsequently the applet decides whether to
download the answering view or not. The alternative of
sending only the query results to the proxy and constructing
the WOQP there is not considered in this paper, although the
model can encapsulate this case as well. We found that
unless the results are very small (not common in OLAP) the

42 1

additional overhead of going through two connections to
reach the client instead of one nullifies any traffic gains.
Moreover, it is reasonable to assume that WOQP
construction in the proxy is more expensive than in the Web
server (when the later operates under normal workload) and,
therefore, it should only happen when query results are
computable from the locally cached views which is more
beneficial than redirecting the request to the Web server. If
the storage left in the cache is not sufficient to store a newly
amved object (view or Web page), the proxy decides which
objects to remove from the cache. In order to do so, it asks
the cache applet for the benefit values of the cached views.
The cache applet, the lattice diagram and the static part of the
WOQPs are never considered in the cache replacement
phase for possible eviction. They are deleted from the cache
only when the traffic towards the central DW falls below a
threshold specified by an administrating entity.
4 Caching Views

Deriving an analytical cost model in order to decide
whether to fetch a view or not is necessary. Furthermore, a
suitable cache replacement strategy must be developed that
takes into account both the nature of the normal Web traffic
and the additional characteristics of OLAP queries. We
tackle both problems by enhancing the GDSP (Popularity-
Aware Greedy-Dual-Size) [131 algorithm to take into
account query processing latencies. The resulting algorithm
is referred to as VEGDSP (View Enhanced GDSP). Similar
enhancements are applicable to most proxy cache
replacement algorithms proposed in the literature. Table 1
summarizes the notation used.

Table 1: Notation used in the paper

1

ViP)

V;s)

v“ll

CCVl“)

C(VjP’)

The view of V(’) that can answer Qi with min. cost

The view of v”) that can answer ei with min. cost

Tbe view that can answer Qi with minimum cost if all

views were materialized

cost for answering query using v:’ view

cost for answering query using v?’ view

I

Symbol I Meaning
v(P) bet of views cacnea at Y I

N i

f (W i)

I
v(I) Set of views materialized at S 1

Network latency for sending W i to the proxy

Frequency of W j

SWj)

S (T)

Size of Vj

Average size of queries for V j

I f W j)]Frequency of V I

I M C (W i) ICache miss cost for W i I
B (W ,) Benefit for W,

B V ,) Benefit for V,
1

!system I

4.1 The VEGDSP Algorithm
Let W i denote the ith Web page (either normal page, or

WOQP), assuming a total ordering of them, s(W ;) its size
and f (W ,) its access frequency. The basic form of
VEGDSP algorithm computes a benefit value B (W i) for
each page using the following formula:

B(W;) = f c Wj). MC(Wj)
(1)

s(W J
where MC(W j) stands for the cost of fetching W j from the
server in case of a cache miss . In other words B (W ,)
represents the per byte cost saved as a result of all accesses
to W ; during a certain time period. The access frequency of
W i is computed as follows:

where j denotes the jth reference to W j , t is the elapsed time
between j + l t h and jth access and Tis a constant controlling
the rate of decay. The intuition behind Equation 2 is to
reduce past access importance. In our experiments f l was
set to 1/2 and T to the total number of requests. VEGDSP
inherits a dynamic aging mechanism from GDSP, in order
to avoid cache pollution by previously popular objects.
Each time a page is requested, its cumulative benefit value
H(W i) is computed by summing its benefit B(W ;) with the
cumulative benefit L of the last object evicted from cache.
Below is the basic description of VEGDSP in pseudocode:

fj+ I(wj) = f , (W ;) . 2-”T + 1 (2)

L=O
IF (W i requested)

IF (W i is cached)

ELSE WHILE (available space<s(W ;)) DO

Store W ;

H (W ;) = L + B (W ;)

L = min(H(W,)J W , is cached}
Evict from cache W , : H(W,) =L

In order to compute the cost M C (W j) various functions
can be chosen. For instance, by selecting MC(W i) = 1 V W ,
the algorithm behaves like LFU. A more suitable metric is
the latency for fetching an object from the server. Most of
research papers compute this latency as the summation of
the time required to setup a connection and the actual
transfer time. This is clearly not appropriate in case of
OLAP queries since the miss penalty depends also on the
query processing time at the central site, which in terms
depends on which views are already materialized in the
server. In the sequel we provide a cost model to compute the
miss and benefit costs for caching views in the proxy.

4.2 The Cost Model
Let V be the set of views in an r-dimensional datacube

(IVl = 2‘). A page W j that arrives at the proxy is the
answer for a unique query Q; . In case W i refers to normal
Web traffic, Qj = 0. Let V‘p’ denote the set of views
currently cached at the proxy and V”) the ones materialized
at the server. Furthermore, let Vy’ be the view among the
set V”) that can answer Qi with minimum cost and Vjp’,
such a view among set V‘”’. Hence, we refer to the
corresponding query costs as C(VI”) and C(VIp’) .
Moreover, let Vr ’ be the view that would answer Qi with
the minimum cost if all views were materialized (either at
the proxy or at the server). In case Q; can not be answered
by V ‘ p ’ , V;“’ = 0 and C(VIp’) = -. We should notice that
Qj can always be satisfied by V”) since the topmost view is
always materialized at the central server. Moreover, if
Qj=O, then C(VI”’, = C(VIP’) = 0 . Let C n (P + S) be the
cost (in terms of latency) for establishing a connection
between the proxy and the server, and Tr(S + P) be the

H (W ;) = L + B(W i)

422

average transfer rate at which the server sends data to the
proxy. The network latency Nj , exhibited when fetching Wi
from the central server is given by:

s(W;) N; = Cn(P + S) + - Tr(S + P)
with s (W j) = s(w)+s(Qi) , where s(w) denotes the size of
the static part of the page and s(Qi) the size of the query
results.

Finally, we denote the time required to construct W i
having obtained the results of Qi by FY’ and FI”’,
depending whether the construction occurs at the server site
or at the proxy. In case Q; = 0, FI’) = FIp’ = 0. The total
cost M C (W;) of a cache miss for W; in terms of latency is
given by:

MC(W i) = C(Vy’) + FY’ + N i (3)
We should notice that in case W j comes from normal

Web traffic Equation 3 is reduced to:
M C (W i) = N; (Q; = 0) (4)

Equations 3, 4 define the miss cost for a WOQP and a
normal Web page, respectively. The benefit and cumulative
benefit values can then be derived using Equation 1. Under
our scheme we do not consider caching WOQPs due to the
ad-hoc nature of OLAP queries.

Concerning views we can compute directly the benefit
B(Vi) of keeping in cache Vi view, by taking the difference
in total cost for answering the queries before and after a
possible eviction of V . from the cache. Let f (V ,) denote
the access frequency of V . . Since there are no direct hits for
views we use the follow&g alternative to compute f(Vi).
Whenever a query Q; arrives, the sache applet adapts the
frequency of V;“ using Equation 2.’

Let Ai(V‘“), V‘”) denote the cost for satisfying Qi in the
whole system (both prox and server). Q; can be answered
either by V‘”’ or by V”, depending on the relative cost
difference. Thus, we reach the following equation:

} (5)
C(VI”’) + FI”’,

C(Vy’) + FI”’ + N;
A,(v‘”’, v‘”’) = min

Let s (V j) be the size of view Vi and s (5) be the
average query size for queries with V;“=Vj. Since all
queries satisfied by the same view incur the same
processing cost (proportional to the view size), the benefit
value of Vi can be computed as follows:

f(V,)[A,,(V‘“’ - { V,}, V‘“’)-A,,(V“’, V‘”’)]
B (V j) = ’“’ (6)

S (V j)

where AV,(V”’, V‘”) stands for the cost of answering at
the system a query Q; : VY“= V , && s (Q i) = s(V,) .
4.3 Deriving the Parameters

Here we provide details on how to compute the
parameters of Equations 5, 6. C (V y)) and C(VIp’) are
computed by finding at the lattice diagram the query costs
of the corresponding VI”’ and Vy’ views as described in
Section 2. Computing C(Vy’) is feasible since in each node
of the cached lattice there is a tag denoting whether the
view is materialized at the central site or not (m-ut-cs tag).
A second tag (c-ut_p) shows if it is cached at the proxy. The
cache applet is responsible for searching the lattice and
defining the query cost valuesS. It is also responsible for
updating the c-utg tag whenever a new view is stored or
deleted. Unless the central site follows a static view
selection policy, we need to employ a consistency

+. Frequency counters are maintained in the lattice diagram.

mechanism in order to keep the m-at-cs tag up to date.
Periodically, the proxy sends a GET IF MODIFIED SINCE
request to the central site and gets an updated version of the
lattice if needed. Naturally, this means that the cache applet
might use a stale lattice copy at its query processing
decisions, but the performance impact of that is expected to
be marginal.

Calculating s (F) values is done by having the proxy
keeping track of the query result sizes exhibited locally and
having the central server informing the applet of the result
sizes for queries satisfied by him. An assumption made in
our experiments was that the proxy and the central server
have e ual rocessing capabilities. This, in terms, implies

is the same, regardless whether it is cached at the proxy or
at the central site. Estimation of the network latency
parameters, can be done by keeping statistics of past
downloads in a per server basis and predict the latency
exhibited in the future, in a way similar to how RTT
(Round-Trip-Time) is estimated in the TCP [25].

4.4 Cache Admittance of Views in VEGDSP
Web caching algorithms consider for caching all

arriving objects. This stems from the fact that Web traffic
exhibits temporal locality [4]. However, when views come
in question such approach is inadequate since their size can
be large, resulting in many objects being evicted from the
cache in order to free space. To avoid this we decided to
follow an alternative policy.

When a view Vi is considered for caching at the proxy,
its benefit value B(V,) is calculated using Equation 6 and
consequently its cumulative benefit value H(V,) is defined
as in Section 4.1. In case that there is not enough storage
space left to cache V i , instead of evicting immediately the
object with the least cumulative benefit which might still
not free enough space, we calculate the minimum possible
aggregated cumulative benefit of a set of objects that if
deleted from the cache, enough space would be freed. V . is
cached only if H(Vi) is greater than this aggregated vaiue.
Figure 4 provides a description in pseudocode of the
complete VEGDSP caching algorithm.
5 Experimental Evaluation

that FI 4 - - F , P‘P’ and the query cost for a view (Figure 3(a))

In this section we present the simulation results. There
are two scenarios considered for comparison. First, a proxy
that caches only normal Web pages using the GDSP
algorithm. Second, a proxy that implements VEGDSP. We
measured the performance of the two alternatives in terms
of Cost Saving (CS). CS is defined as:

WCosr - PCosr
wcosr

where WCost is the cost occurred when no proxy is
available and PCosr the cost of each of the proxy
implementations.

5.1 The Workload
In order to simulate our environment we generated

representative workloads for both OLAP queries and Web
requests. For the OLAP queries we employed datasets from
the TPC-H benchmark [27] and the APB benchmark [20].
We used a subset of the TPC-H database schema consisting
of 14 attributes, while for the APB dataset we used the full

$. Instead of searching the lattice upon a query arrival, each node in
the lattice keeps an answering-view field storing the minimum cost
view that can answer queries referring to the node. This information
can be maintained efficiently when a new view is added or deleted
from the cache.

423

L=O
IF (Wi requested && Qi = 0) /*Normal Web page*/

IF (W i is cached)

ELSE WHILE (available space<s(W.))DO
H(W,) = L+B(W,)

L = min{H(Wk) ,H(Vm)JW~Vm are cached)
Evict object K = ((W, : H (W,) == L) II (V,, : H(V,) == L))

Store Wi
H(W i) = L + E (Wi)

ELSE IF (W. requested &&
IF ((VIPf+ 0) && (A,($'), V@)) == C(V:')) + F?'))

0) /*OLAP query*/

Find query results
Construct and send back Wi
H(Vj'') = L+B(VI'))

Send Qi to the central site
ON ARRIVAL of view-id V:" from the server

ELSE /* Q, can not be answered by the proxy
or i t is more expensive*/

temp = available space
cum-benefit = 0
evict-list = 0
WHILE (ternpa(VjS))) DO /*calculate the aggregation of cumulative

benefits for the least costly set of objects
need to be evicted to free-up space*/

L = min{H(Wk),H(V,)IW,, Vm are cached]
ADD IN evict-list object K = ((W, : H (W,) == L) II

temp += s(K)
cum-benefit += H (K

IF (cum-benefit < H (V y))
Evict objects in the evict-list
Fetch and store Vj"'
H(Vj"') = L+B(VY)) cumulative benefit*/

(Vn : H(V,) == L))

1 /*Fetch the answering view from
the server if beneficial*/

/*Store Vj") with H(Vj"))

Figure 4: Pseudocode for VEGDSP

lema for the dimensions. The size of raw data for TPC
6M tuples and for APB 1.3M tuples. For the Web tra

we used a synthetic workload with Zipf distribution for
popularity of pages and a heavy tail distribution for the page
size. The average page size was 50K and that was the value
used also for the static part of WOQP. The total number of
Web pages was 30,000 and the total number of requests
100,000. OLAP queries were generated using a uniform
distribution, i.e., the probability of a query to refer to a node
in the lattice was equal for all nodes and were afterwards
combined with the Web traffic randomly again, to form the
request pattern arriving at the proxy. Query size was also
selected to follow a uniform distribution to the size of the
view.

Since the views materialized at the DW server affect the
query costs and the caching decisions, we decided to
employ the VEGDSP at the server side, too. Furthermore
we allowed the server to cache only 10% of the datacube
(total size of views) which corresponds for the TPC-H
dataset to l00M tuples and for the APB to 5.8M tuples. We
should note here that the only factor that burdens the
materialization of all the datacube is the storage capacity,
i.e., we do not take into account update constraints. We
conducted our experiments in an UltraSparc2 workstation
running at 200MHz with 256 MB of main memory. The
trend of the results for both the APB and the TPC-H dataset
was similar. In the rest of this section we will only present
the results for the APB dataset, due to lack of space.

5.2 Results
Intuitively, caching OLAP data into the proxy server

pays off when there is a substantial amount of OLAP
requests. In our first set of experiments, the goal is to
identify the ratio of OLAP to common Web requests above
which, VEGDSP is beneficial. In Figure 5(a) we compare
VEGDSP and GDSP using the APB dataset. The cache size

is fixed to 10% of the total size of Web pages, the network
transfer rate is 32KBps and the percentage of non-OLAP
(i .e., Web requests) varies from 50% to 100%. The first
thing to notice is that VEGDSP outperforms GDSP with the
differences being more apparent when the percentage of
OLAP requests is high. When the workload consists of Web
requests only, VEGDSP acts exactly as GDSP. Observe that
the performance of GDSP deteriorates when the OLAP
requests increase. This is due to .the fact that GDSP
considers only Web requests, therefore the percentage of
requests that are benefited drops.

Figure 5(b) shows the results when the cache size is
50% of the total size of Web pages. While the trend is the
same, the difference between the two algorithms is smaller.
By setting the cache to 50% we provide enough space for
GDSP to achieve almost its maximum performance since
most of the frequently accessed pages fit in the cache (recall
that the Web requests follow a Zipf distribution). On the
other hand, VEGDSP is benefited in a smaller extend by the
increase to the cache size, since the OLAP requests follow a
uniform distribution. Note that VEGDSP was not always
better than GDSP. We recorded some cases, when the
OLAP requests were around 5% of the workload, where
VEGDSP was marginally worse. This was more obvious for
the TPC-H dataset, since it is more skewed. The reason is
that the cost overhead for transferring views from the data
warehouse to the proxy is not amortized by answering a
significant number of queries locally. Nevertheless, in the
general case our experiments show that there is a threshold
on the percentage of OLAP traffic, above which caching
OLAP data provides substantial benefits. In the tested cases
this threshold was around lo%, which is very promising,
since in a decision-making environment this value can be
easily exceeded.

In the second set of experiments we tested the
performance of VEGDSP when cache size varies between
1% and 50% of the total Web page size. The network
transfer rate was again fixed to 32KBps and the percentage
of OLAP requests was set to 50% (Figure 6(a)) and 30%
(Figure 6(b)). The performance for both algorithms
increases to the available cache size. We observe that
VEGDSP follows the same trend as GDSP while clearly
maintaining a lead even for the very modest cases of 1%
and 5% cache sizes. Another observation is that the
proportional performance difference of the algorithms
shrinks as the cache size increases (noted also in Figure 5).

In the final experiment, we investigated the performance
of VEGDSP as a function of the transfer rates between the
proxy and the central DW. VEGDSP was executed for 50%,
70% and 90% of non-OLAP traffic and the network transfer
rate varied from 32 KBps to 4 MBps. Figure 7 presents the
results for cache sizes equal to 10% and 50%. We observe
that CS decreases as the network transfer rate increases.
Recall from Section 4 that the decision of whether to satisfy
a query using the cached views at the proxy or redirecting it
to the DW, depends on both the processing cost and the
network cost. Since the DW materializes a substantial part
of the datacube there is a high probability that the
processing cost for answering a query at the DW is lower
than the one at the proxy. With a higher transfer rate more
queries will be redirected to the DW resulting to lowering
the gains of the algorithm. Since this behavior is due to
OLAP traffic, the performance drop is more prominent at
the VEGDSP-50 case.

The above results indicate that in the presence of OLAP
queries traditional Web caching schemes can be inefficient.
The proposed architecture together with the cache

424

025

020

0 15

0 10

005

om

om
050

049

03

OB
0 10

O f f l

(a): 10% cache

uMGDSP U oGDSP

50% 60% 70% 80% 9% lD3%

(b): 50% cache

Figure 5: CS vs. Percentage of Web
Requests for different cache sizes.

09)

040

030

020

0 10

Om
1% 5% 10% 50%

(a): (50%/50%) (OLAPIWeb)

1% 5% 10% 50%

(b): (30%/70%) (OLAPIWeb)

o.50 1

om
32K 512K 1M 2M 4M

(a): 10% cache

om I
32K 512K 1M 2M 4M

(b): 50% cache

Figure 6: CS vs. Cache Size for
different (OLAPMleb) ratios.

Figure 7: CS vs. Network Transfer
Rate for different cache sizes.

algorithm (VEGDSP) can result in improving the overall
system performance.
6 Related Work and Conclusions

In this paper we considered the problem of minimizing
the cost of online analytical processing queries issued
through the Internet. We proposed a novel scheme that
allows a proxy to reply to OLAP queries without
necessarily having to access the central DW. An analytical
cost model is derived to quantify the actual benefits.
Furthermore, a suitable cache algorithm (VEGDSP) is
developed that judiciously treats OLAP views and Web
pages, taking into account different costs involved in each
case. Results of the simulation studies confirm the
efficiency of our framework, even when the ratio of OLAP
queries to normal Web traffic is moderate.

Related to this paper is previous work on the view
selection problem [121 where the authors proposed a greedy
algorithm that chooses a near-optimal set of views, given
the storage capacity constraint and an expected query
workload. View selection under update constraints was
studied in [9]. The approximation algorithm achieves in the
worst case solution quality within 63% of the optimal. In 131
the search space of the problem is reduced by a heuristic
that excludes views irrelevant to the most frequent queries.
[24] describes another method for view selection which is
based on sorting and has smaller computational overhead
than [121, while ensuring the same lower worst case bound
provided that the view sizes satisfy certain conditions. In
[26] the authors study the minimization of both query
execution and view maintenance costs, under the constraint
that all queries should be answered from the selected views.
The above methods aim at solving a resulting optimization
problem in a static and centralized manner. Even though
they can be considered for implementing view selection in a
central site if the query patterns do not change frequently,

they are not suitable for materializing views in a dynamic
environment.

In [15] a method is proposed in order to dynamically
materialize and maintain fragments of OLAP views with
respect to both space and time constraints in a DW, while in
[16] the authors consider a Web server linked to a DBMS
and tackle the problem of whether to cache views at the
server, at the DBMS, or compute them on fly. [1.51 and [161
are simple caching algorithms that consider views as the
only objects to be cached. Thus, they can suffer from what
known as the cache pollution problem, i.e., previously
popular documents fill in the cache if applied directly to a
Web environment. A normalized cost caching and
admission algorithm for DW is presented in [22]. The same
authors proposed similar caching algorithms for Web
proxies in 1231, but do not consider OLAP queries. The
problem of caching OLAP in Web environments is studied
in [14]. However, that approach is based on a dedicated
infrastructure of DBMSs which is different from the Web
proxies. In [19], active caching is employed to store
database results in proxies, but only transactional (Le., non-
OLAP) workloads are considered.

Various Web proxy caching algorithms exist in the
WWW literature [2], [6], [13], [17], [23], [29]. Our
approach is applicable in conjunction with these algorithms.
Here, we use the GDSP algorithm because as established in
[I31 and in [2], [6] , [30] (for previous versions of the
algorithm), it leads to efficient solutions when Web traffic is
concerned. Our aim is not to propose a new proxy caching
algorithm but rather to provide a framework for caching
OLAP views as well as illustrating and solving the
problems that rise. We are currently applying our extensions
to all the main algorithms of the WWW literature to
compare their performance in our environment.

Another direction for the future work involves the
development of efficient update processes. In this paper we

425

used an approach that invalidates all cached copies instead
of updating the cached views at the proxies. Strategies that
refresh parts of the cached views and invalidate others will
most likely lead to better performance. Another possibility
is to take advantage of the ICP (Internet Cache Protocol)
[28] and the proxy hierarchies as described in [8] to further
reduce the query costs. The intuition is that a proxy can
fetch a view or satisfy a query by forwarding the request to
a proxy located close to it, instead of sending it to the
central site. Research in both directions can be based on the
proposed framework, cost model and the caching algorithm.

Acknowledgments
This work was supported from the Research Grants

Council of the Hong Kong SAR, grants HKUST 6090/99E
and HKUST 6070/00E, as well as, HKTIIT98/99.EG02.

References
M. Abrams, C. Standridge, G. Abdulla, S . Williams and E.
Fox, “Caching Proxies: Limitations and Potentials,” in Proc.
of the 4th Int. World Wide Web Conf95: The Web
Revolution, Boston MA, Dec. 11-14, 1995.
M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich and T. Jin,
“Evaluating content management techniques for Web proxy
caches,” in Proc. of the ACM SIGMETRICS Pegormance
Evaluation Review, Vol. 27(4), pp. 3-1 1, March, 2000.
E. Baralis, S. Paraboschi, E. Teniente, “Materialized view
selection in a multidimensional database.” in Proc. of the
23rd Int. Con$ on Very Large DataBases (VWB’97j, pp.
156-165, 1997.
P. Barford, A. Bestavros, A. Bradley and M. Crovella,
“Changes in Web client access patterns: characteristics and
caching implications,” WWW Journal Special Issue on
Characterization and Performance Evaluation, Vol. 2, pp.

A. Bestavros, “WWW Traffic Reduction and Load
Balancing through Server-based Caching,” IEEE
Concurrency: Special Issue on Parallel and Distributed
Technology, vo1.5, pp. 56-67, Jan.-Mar. 1997.
P. Cao and S. Irani, “Cost-aware WWW proxy caching
algorithms,” in Proc. of the USENIX Symposium on Internet
Technology and Systems, pp. 193-206, Dec. 1997.
P. Cao, J. Zhang and K. Beach, “Active Cache: Caching
Dynamic Contents on the Web,” in Proc. of Middleware’98
Conference, 1998.
A. Chankhunthod, P.B. Danzig, C. Neerdals, M.F. Schwartz
and K.J. Worrell, “A Hierarchical Internet Object Cache,” in
Proc. of the USENIX Technical Conference, San Diego, CA,
Jan. 1996.
H. Gupta, 1.S. Mumick, “Selection of Views to Materialize
Under a Maintenance-Time Constraint,” Int. Con$ on
Database Theory (ICDT’99), pp. 453-470, 1999.
J.S. Gwertzman and M. Seltzer, ‘The Case for Geographical
Push-Caching,” in Proc. of the 5th Workshop on Hot Topics
in Operating Systems (HotOS- V), IEEE Computer Society
Press, Los Alamitos, Calif., 1995, pp.51-55.
1. Hammer, H. Garcia-Molina, J. Widom, W. Labio and Y.
Zhuge, ‘The Stanford Data Warehousing Project,” IEEE
Data Eng. Bulletin, Special Issue on Materialized Views and
Data Warehousing, Vol. 18(2), pp. 41 -48, 1995.
V. Harinarayan, A. Rajaraman, and J.D. Ullman,
“Implementing Data Cubes Efficiently,” in Proc. of the ACM
SIGMOD lnt. Con$ on Management of Data, pp. 205-216,
1996.
S . Jin and A. Bestavros, “Popularity-Aware GreedyDual-

15-28, 1999.

1181

1191

1201

1211

1241

1251

1261

1271

1281

1291

1301

Size Web Proxy Caching Algorithms,” in Proc. of the 20th
IEEE Int. Con$ on Distributed Computing Systems
(ICDCS’OO), April 2000, Taiwan, pp. 254-261.
P. Kalnis, D. Papadias, “Proxy-Sever architectures for
OLAP,” in Proc. of the ACM SIGMOD Int. Con$ on
Management of Data, pp. 367-378.2001.
Y. Kotidis, N. Roussopoulos, “DynaMat: A Dynamic View
Management System for Data Warehouses,” in Proc. of the
ACM SIGMOD Int. Con$ on Management of Data, pp. 37 1 -
382, 1999.
A. Labrinidis, N. Roussopoulos, “WebView
Materialization,” in Proc. of the ACM SIGMOD Int. Conf:
on Management of Data, pp. 367-378,2000.
P. Lorenzetti, L. Rizzo and L. Vicisano, “Replacement
policies for a proxy cache,” Techn. Report LR-960731,
Univ. di Pisa, available at: http://www.iet.unipi.it/-luigil
research.html.
T. Loukopoulos and I. Ahmad, “Replicating the Contents of
a WWW Multimedia Repository to Minimize Download
Time,” in Proc. of the 14th Int. Parallel and Distributed
Processing Symposium, (IPDPS’OO), Cancun, Mexico,
May, 2000.
Q. Luo., J.F. Naughton, R. Krishnamurthy, P. Cao, Y. Li,
“Active Query Caching for Database Web Servers,” in
Proc. of Int. Workshop on Web and Databases (WebDB),

OLAP Council, “OLAP Council APB-I OLAP
Benchmark, Release 11,” http://www.olapcouncil.org.
M. Rabinovich, “Issues in Web Content Replication,” in
Data Engineering Bulletin, Invited Paper, V01.21 No.4,
Dec. 1998.
P. Scheuermann, J. Shim and R. Vingralek,
“WATCHMAN: A Data Warehouse Intelligent Cache
Manager,” in Proc. of the 22nd Int. Conf: on Very Large
DataBases (VWB’96), pp. 51-62, 1996.
J. Shim, P. Scheuermann and R. Vingralek, “Proxy cache
algorithms: Design, implementation and performance,”
IEEE Trans. on Knowledge and Data Engineering, Vol.

A. Shukla, P.M. Deshpande, J.F. Naughton, “Materialized
View Selection for Multidimensional Datasets,” in Proc. of
the 24th Int. Con$ on Very Large DataBases (VWB’98),
pp. 488-499, 1998.
W.R. Stevens, ‘‘TCPflP Illustrated,” vol. 3, Addison-
Wesley, 1996, Section 10.5.
D. Theodoratos, T.K. Sellis, “Data Warehouse
Configuration,” in Proc. of the 23rd Int. Con$ on Vety
Large DataBases (VWB’97). pp. 126-135, 1997
Transaction Processing Performance Council, ‘‘TPC
Benchmark R (Decision Support), Rev. 1.0.1,” http://

D. Wessels and K. Claffy, “Internet Cache Protocol (ICP)
version 2,” RFC2186, 1998.
R. Wooster and M, Abrams, “Proxy caching that estimates
page load delays,” in Proc. of the 6th Int. World Wide Web
Con$. Santa Clara, CA, April, 1997.
N.E. Young, “On-line caching as cache size varies,” in
Proc. of Symposium on Discrete Algorithms (SODA’91),

pp.29-34,2000.

11(4), pp. 549-562, July/Aug., 1999.

www.tpc.org/, 1993 - 1998.

pp. 241-250, Jan., 1997.

426

http://www.iet.unipi.it/-luigil
http://www.olapcouncil.org
http://www.tpc.org

